
Experience Learned in Deploying htmSQL Based Application
Hsiwei Yu (Michael), Digital Intelligence Systems, Centreville, VA

Chapman Gleason, U.S. Environmental Protection Agency, Washington, DC

ABSTRACT
This paper discusses techniques for dynamic drill-down of web pages
using SAS htmSQL and JavaScript language elements. Possible future
enhancements to htmSQL, encountered during our development, are also
addressed.

INTRODUCTION
Problems: The user wants a web page showing all customers who made
a purchase yesterday, and then click on a customer to see the detail
invoice. Or, the user wants to select a product, and on the same page,
seeing a list of stores having sold this item yesterday, then pick a store to
see all activities for that store.

In the first scenario, we can use htmSQL, an integral part of
SAS/IntrNet, to query SAS or another DBMS and dynamically produce
the list of customers. For the second one, since the list of stores is
dependent upon the chosen product, we have to use additional JavaScript
programming to produce the list of eligible stores. This one-level drill
down can be expanded to two- or three-levels, though the JavaScript
programming logic becomes increasingly complex. We have recognized
patterns of the required JavaScript code, in the future we can automate by
writing SAS Macro programs to generate the desired HTML file based on
the application developer’s input parameters.

SET UP SAS/SHARE SERVER
Libname libref1 ‘OS-file-name’;
Libname libref2 ‘OS-directory’;

/* Make formats known to this server */
Options fmtsearch= (libref1.formats);

Proc server server=SAS_Share_server;
Run;

htmSQL requires a SAS/Share server. Modify the fmtsearch system
option to allow your custom formats to be visible to htmSQL. Note only
htmSQL can make use of a remote format, whereas local SAS session,
using remote library services, cannot access format catalogs residing on
a remote host. For example,

/* A client SAS session */
libname libref1 server= host.SAS_Share_server;
options fmtsearch= (libref1.formats) fmterr;
proc print data= ..;
formats var $a_format.;
run;

This client SAS would still fail because it can’t make use of a format
catalog residing on a remote host. This must be a future enhancement for
the SAS System.

OUTLINES OF A HTMSQL INPUT FILE
A file used as input to htmSQL always has a file extension of hsql. Its
content is a mixture of the regular HTML language elements and htmSQL
directives.

<HTML><HEAD> .. <BODY> ..
{query datasrc=”htmSQL-ds” .. }
 {sql}
 .. SQL query ..

 {/sql}
 {eachrow}
 .. html element to display a row ..
 {/eachrow}
 {norows}
 .. html element to show message ..
 {/norows}
{/query}
.. </BODY></HTML>

Since in our development we are only concerned with data
retrieval, this paper will not discuss the {update} section
available in htmSQL and its associated {success} and {error}
directives.

IMPORTANT HTML AND JAVASCRIPT ELEMENTS
JavaScript can be embedded in an HTML file, and it is
executed on the client’s machine. Some frequently used
features:

<FORM .. METHOD=POST
ACTION=’htmSQL.exe/..hsql’>
<INPUT TYPE=HIDDEN NAME= VALUE= >
document.location.pathname
document.location.href
onchange()
onclick()
submit()

To implement a dynamic drill down, we can concatenate the
document.location.pathname property with the user’s choice to
construct the entire URL and then assign it to
document.location.href property, effecting a new dynamic query
result page. Alternatively, with post method and form’s submit
method, the newly constructed URL can be hidden from view.

Event handlers, such as onchange(), onclick(), are key
functions for reacting to user actions.

HTMSQL VARIABLE REFERENCE AND CGI NAME AND
VALUE PAIR
The name and value pairs passed by common gateway
interface (CGI) is recognized by htmSQL and their values are
resolved inside a hsql file, then the resulting file is sent to the
web browser. For example, a URL like
../htmSQL.exe/aaa.hsql?NAME1=VALUE1& ..

And the corresponding hsql file has this content:
<SELECT NAME=any_name ONCHANGE=” .. ”>
{sql}
{* This is the aaa.hsql file *}
select column1
 from a_SAS_dataset
 where {&NAME1} = “a_constant”
{/sql}
{eachrow}
<OPTION>{&column1}
{/eachrow}
</SELECT>

After resolution by htmSQL, the SQL becomes
..
{sql}
{* This is the aaa.hsql file *}
select column1
 from a_SAS_dataset

 where VALUE1 = “a_constant”
{/sql}
..

In the aforementioned SAS SQL context, VALUE1 must be a valid SAS
column name in the a_SAS_dataset. If VALUE1 is not a valid column,
say longer than eight characters, in the a_SAS_dataset, a SAS SQL
syntax error occurs.

We can divide htmSQL variables into two groups based on their origins,
those derived from CGI name and value pairs, and those purely from SAS
SQL. In previous example, {&NAME1} is derived from CGI name and
value pair, whereas {&COLUMN1} is purely from SAS SQL. It is best to
give htmSQL variable distinctive name so as to avoid any confusion about
a htmSQL variable’s origin. For example, use more than 8 characters for
htmSQL variable name derived from CGI input parameters. A practical
use of htmSQL resolving CGI input parameters is you can set up hsql
input file having htmSQL variable reference from CGI parameters only,
without any query or update sections at all. A web page’s content can be
dynamically changed without writing a SAS/IntrNet program just to do the
CGI parameter resolutions. It is a very handy feature.

APPLICATION 1: ONE-LEVEL DRILL DOWN
In this scenario, we use SASUSER.HOUSES data set for illustration.
User is presented with a list of columns as radio boxes for sorting the list
of houses. Clicking on a radio box, then the list of houses is dynamically
sorted by that column, shown in Fig 1. The URL is something like:
..htmSQL.exe/one-level.hsql?order_column=STYLE
Outline for this main query section:
{sql}
 select style, bedrooms, sqfeet, street
 from sasuser.houses
 order by {&order_column} descending
{/sql}

<TABLE .. ><CAPTION>Sorted by ..
{&order_column}</CAPTION>
 <TR><TH .. >Style</TH> ..
{eachrow}
 <TR><TD .. >{&style}</TD>
{/eachrow}

Note the very first invocation of this page, the entire URL is plainly visible,
a user can maliciously change its content, such as from
‘order_column=STYLE’ to ‘order_column=ABCXYZ’. We added an extra
query to check the existence of ‘order_column’ in SASUSER.HOUSES
data set. If a non-existent column is requested, a norows directive can
show message to the user. For a valid column, then eachrow directive can
bring in the main query section to generate the desired house listing.

This trick is needed because
 select style, bedrooms, sqfeet, street
 from sasuser.houses
 order by non-existent-column descending

would produce syntax error for htmSQL. HTML programmer cannot trap
these error messages from htmSQL. It would be nice if htmSQL provides
a special directive for syntax error so that one can re-format these
messages at will.

Finally additional JavaScript programming are needed, one when the user
clicks on a different radio box, and one for making sure the radio box
representing current selection is properly selected.

APPLICATION 2: TWO-LEVEL DRILL DOWN
In this scenario, user is first presented with a list of style of houses.
Choose a style, then a list of number of bedrooms becomes available.
Choose the desired bedrooms, all houses satisfying these criteria are
shown (Fig 2).

THREE QUERY SECTIONS
{sql}
 select distinct style
 from sasuser.houses

 order by style
{/sql}
{* }
<!-- HTML elements not shown -->
{sql}
{* STYLE drives bedroom selection *}
 select distinct bedrooms
 from sasuser.houses
 where style =
"%sysfunc(upcase({&style_x}))"
{/sql}
{* }
<!-- HTML elements not shown -->
{sql}
{* STYLE and BEDROOMS drive eligible
houses *}
{* The eligible houses query *}
 select sqfeet, price, street
 from sasuser.houses
 where style =
"%sysfunc(upcase({&style_x}))"
 and bedrooms = {&bedrooms_x}
{/sql}

Note the selection criteria for eligible houses query is
dependent on user input. Also note the use of %SYSFUNC in
the where condition to translate user input into all capital-
lettered constant. Since htmSQL is executed first on the web
server machine and JavaScript later on client machine, we
can’t use JavaScript to do the capitalization because it would
have been too late for htmSQL.

ANOTHER {NOROWS} TRICK
We decided to show eligible houses only after user has
specified style and bedroom selections. In order to suppress
the eligible houses query’s effect when no bed room selection
has been made, we use an auxiliary query section and embed it
inside this auxiliary’s eachrow directive.

{sql}
 select count(*) as counter
 from sasuser.houses
 where style =
"%sysfunc(upcase({&style_x}))"
 and bedrooms = input(
"{&bedrooms_x}", 8.)
 having counter > 0
{/sql}
{eachrow}
{* Now include the eligible houses query *}
..

It’s worth noting this extra query elongated the response time
because the SAS/Share server must process four instead of
three queries.

A REAL LIFE APPLICATION
Imagine a database storing yearly toxic chemical release
information from each factory. A simplistic view of these
records has the following dimensional columns:
State, County, Facility, Year, Chemical,
Media (through which a chemical is released
into environment, such as air, water, etc.)

The only numeric column is Amount (release weight in lbs.)
Can we dynamically query this database from Internet?

The HTML interface, not using htmSQL, is in Fig 3. There can
be some 600 chemicals required for report, but in a particular
county and year combination, only a handful of chemicals were
released. Similarly, not all counties in a state have reported
toxic releases. Without htmSQL, we’re obligated to show all
600 chemicals in the ‘CHEMICAL’ list and all counties in a
state in the ‘COUNTY’ list. With htmSQL, we can show only
those chemicals that were released, and only those counties
that had reported releases, see Fig 4.

This application allows the user to select one of thirteen reports. Some
reports, say a county-level report, the user must choose a county in order
to see generated report; for a state-level report, the user must choose a
state but not county. The content of the chemical list is dynamically
determined by user’s selection of an U.S. national-, state-, or county-level
report. To control interactions between these selectable items, TYPE-OF-
REPORT, STATE, COUNTY, YEAR, and CHEMICAL, JavaScript is
required. Utilizing corroborative processing between htmSQL and
JavaScript, we can produce dynamic content changes for not only the
CHEMICAL, but also the COUNTY and STATE lists.

Here’s a brief description of how to generate the list of chemicals for a
given state and year combination, in response to a user clicking on the
‘type of report’ drop down list and choosing a state-level report. In order to
optimize the web query’s response time, we preprocessed the base SAS
table to create a chem_STATE_YEAR_dimension_dataset, using

Proc sql;
/* Chemical found in particular state and year */
Create table chem_STATE_YEAR_dimension_dataset as
Select distinct state, year, chemical
From base_table
Group by state, year;

The input for htmSQL to create the chemical list has these elements in it,

<SELECT NAME=CHEMICAL>
<!--
http://../htmSQL.exe?Chemical_File=chemical-STATE-
YEAR&.. & ..
-->
{include file=”..{&Chemical_File}.hsql”}
</SELECT>

Note the JavaScript variable ‘Chemical_File’ is set by the event handler
associated with the ‘type of report’ menu option. In that event, noting a
state-level report has been chosen by the user it does something like:
/* Snippet of JavaScript event handler */
Chemical_File=”chemical_STATE_YEAR”;

/* Also setting other selection values, such as
state and year values chosen by user */

/* Construct additional URL requirements */
/* Finally set to location.href */
document.location.href= “.. /htmSQL.exe” +
“?Chemical_File=chemical_STATE_YEAR” +
“&state_value=..” +
“&year=..” + ..;

Finally, the chemical_STATE_YEAR.hsql file has this content:
{sql}
{* This is chemical-STATE-YEAR.hsql file *}
select chemical
from chem_STATE_YEAR_dimension_dataset
where state = “{&state_value}”
 and year = {&year}
{/sql}
{eachrow}
<OPTION>{&chemical}
{/eachrow}

Note htmSQL variables, {&state_value}, {&year} are derived from CGI’s
name and value pairs.

We would repeat this basic process for county- and U.S. national-level
chemical list, and so on. The final product is several files with mixed
contents of HTML, htmSQL, and JavaScript language elements. As for

the generated reports themselves, SAS/IntrNet programs are
written for back-end processing.

CONCLUSION
We note that SAS/IntrNet application can have multiple servers
for responding to a request, for example,
http:// ..cgi-bin/broker?_SERVICE=default& ..

This _SERVICE can have multiple SAS daemons ready to
respond to an Internet client.

However, for htmSQL,
{query DATASRC=”..”}

A DATASRC is essentially a single SAS/Share server,
meaning a htmSQL-based HTML file can only be served by a
single SAS/Share server. If the application has lots of users, a
single Share server might produce unacceptable response
time, despite the best optimization efforts. It is for this reason
that we didn’t actually deploy the htmSQL-based application,
but chose instead a pure JavaScript-based version. We
recommend SAS Institute enhance htmSQL to utilize several
SAS/Share servers for responding to an Internet client

htmSQL is still very useful for generating HTML page with
dynamic contents, such as the samples we have shown. From
the samples in htmSQL installation package, we have
developed an application capable of displaying the structures
and contents of any Oracle database instance, including
sample SAS code to extract Oracle data into SAS. Though the
htmSQL-based TRI Explorer is not adopted for deployment at
this time, we are looking into other ways for allowing users to
dynamically query complex databases on the Internet.

SAS, SAS/SHARE, and SAS/INTRNET are registered
trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. Oracle is a registered trademark of Oracle
Corporation. indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

ACKNOWLEDGMENTS
Authors like to thank Dr. William P. Smith of US Environmental
Protection Agency who originally developed the TRI Explorer
prototype. Jay Jacob Wind of American Environmental Institute
provided SAS/IntrNet programming support. Also thanks to
Steve Hufford, Nathan Wilkes, and Rashmi Lal of US EPA and
Myles Powers of Logicon for providing requirement
specifications and reviews for the TRI Explorer project. Special
thanks to David Barron of SAS for helping to review this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Hsiwei Yu (Michael)
Digital Intelligence Systems
Centreville, Virginia
http://www.disys.com
Work Phone: 202-260-5312
Email: vhyu@netkonnect.com

Chapman Gleason
U.S. Environmental Protection Agency
Washington, DC
Work Phone: 202-260-9006
Email: gleason.chapmane@epa.govI

Fig 1, One-level drill down, CGI input parameters visible

Fig 2, Two-level drill down, CGI input parameters hidden

Fig 3, Without htmSQL, note many chemicals are not ever
released in Wake county, North Carolina

Fig 4, With htmSQL, chemicals can be dynamically changed

